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Computation of the Hecken Impedance Function
J. H. CLOETE

The Dolph-Chebyshev impedance function derived by
Klopfenstein [1] has discontinuities at the taper ends which
introduce unwanted effects in certain applications. The Hecken
impedance function {2] is not optimum in the Dolph-Chebyshev
sense, but achieves matching without impedance steps. For any
bandwidth and maximum magnitude of reflection coefficient in
the passband, the Hecken taper is only slightly longer than the
optimufn taper [2]. Hecken’s near-optimum taper is therefore an
attractive alternative to the optimum taper when impedance
discontinuities are undesirable.

The equation for the near-optimum impedance function
corntains a transcendental function G(B,&) which is tabulated in
Hecken’s paper. The function is given by

¢ —
GO = ~2— | LBV = ¢ a
sinh B J,
where Iy(z) is the modified Bessel function of the first kind and
zero order.
Instead of using the tables, G(B,£) may be computed re-
cursively as

. B ®
G(B,&) = ab
(B:0) sinh B ¥='o s
where
BZ
A = 4G = e -1
¢ — & + 2kby_,
by = b, = .
0=¢ b 2k + 1

The derivation is based on the method described by Grossberg
[3] and is not given here.
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Synthesis of Certain Transmission Lines Employed in
Microwave Integrated Circuits

RAYMOND CRAMPAGNE anp GRATIA KHOO

With a quasi-TEM approximation, the characteristic param-
eters of numerous structures used as hyperfrequency micro-
electronics transmission lines can be calculated with the aid
of conformal mapping. Simple theoretical formulas are rarely
used since they bring into play the function K(k)/K’(k) where
K(k) is the complete elliptic integral of the first type, K'(k) its
complementary function, and & its argument.

Some geometrical configurations which can be treated are
sHown in Fig. 1(a)-(c). This method is particularly interesting
since expressions of k (argument of elliptic integral) as a func-
tion of geometric dimensions are often simple.

The infinite dielectric thickness hypothesis made in certain
cases is, in general, justified by the spacing between conductors.
Although this method is surprisingly simple accompanied by a
large application domain, it has been put aside by many research
workers. Instead, sophisticated numerical methods like those of
finite differences and finite elements [1] have been preferred.
These methods are applicable for the analysis of transmission
lines but not for the synthesis. Moreover, they do not lead to
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simple formulas which can be calculated with an electronic
pocket calculator.

The aim is to obtain simple analytic formulas which may
be employed in both the analysis and synthesis of lines where
the precision of results obtained and the field of validity of
these formulas are known.

With the aid of a classical algorithm [2], values of the func-
tion f(k) = K(k)/K'(k) for all values of k between O and 1
have been obtained with a precision of 10~%. A cormparison of
our results with those given in the tables [3] (for values of the
argument k, corresponding to those of the tables) is a proof
that the precision obtained is actually 108,

A polynomial expression was then employed in smoothing
out the curve obtained previously by minimizing the calculated
error with the aid of the least squares method. Depending on the
use of calculated values, a development of f(k) = K/K’ as a
power of k, or a development of &k = f~1(K/K’) as a power of
K/K’, have been obtained. In order to obtain an error inferior
to 107 for all values of the parameter, a polynomial approx-
imation for two different independent intervals is necessary. A
single interval with the same precision would require a poly-
nomial of a degree such that its use in practice becomes in-
convenient and contrary to our aim.

Only the development of f~* will be given since a study [4]
of the formulas given in the References indicates that the analysis
of lines can be carried out with good precision by using the
formula

K(k) Fid

= — 1
K'(k)  log (1/q) o

where

g =¢+ 25 + 156° + 15013 + 170727

TABLE 1
VALUES OF COEFFICIENTS FOR THE TWO POLYNOMIAL
APPROXIMATIONS OF k = f~1(K/K’)

0 K/K! Q0,5 0,5 K / K’ 1

aD 0,00913 aD - 00,0658
a, - 0,1352 a, - 0,3211
a, + 00,2888 a2 + 41,6786
ag |- 0,1367 ag + 0,5984
a, + 5,523 a, - 1,849
ag I- 5,087 ac + 0,6705
and

1=K
1+ K’
Moreover, this formula can be easily manipulated on an

electronic pocket calculator.
The polynomial approximation to be found is of the form

2e k?=1- k%

k= i a(K/K'). 2

i=o
The choice of the polynomial’s degree depends upon the
desired precision. In the two intervals chosen for K/K’: 0 <

K/K’ < 0.5 and 0.5 < K/K’ < 1, the minimum value of the
polynomial’s degree N, for an error precision of less than 10~4,
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has been found to be 5. Values of the coefficients a; (are shown
in Table I. The following transformation formulas are helpful
in restricting K/K’ to the interval (0,1)

Kk = K'(k) K(k) = K'(k) K+ k2=1 ()

Equation (2) is valuable in practice, since it allows the syn-
thesis of all transmission lines to be realized. A few of them are
shown in Fig. 1.

In fact, for a given characteristic impedance, the correspond-
ing geometric dimensions of the line can be calculated rapidly
by means of an electronic pocket calculator. Moreover, since
the two developments are valid for all values of the character-
istic impedance, one can know immediately if the realization of
the latter is possible or not for a chosen geometrical configura-
tion.

Hence, provided that the dielectric interfaces of geometrical
configurations do not present any difficulty in conformal map-
ping, analytical expressions obtained can be easily manipulated,
without having to resort to tables.

We hope that these synthesis formulas will find a place in the
bibliography and allow engineers to make use of elliptic inte-
grals with less hesitation.
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A Two- or Three-Dimensional Green’s Function Which
Can Be Applied to Hyperfrequency Microelectronic
Transmission Lines

RAYMOND CRAMPAGNE anp JEAN-LOUIS GUIRAUD

Knowing Green’s function and the charge density found on
different conductors, the diverse capacities [1]-[4] can eventually
be calculated by solving an integral equation. This has been
dealt with only for simple dielectric-conductor configurations.
In Coen’s article [5], the integral representation of log (Z) is
employed in calculating Green’s function for microstrips (with

or without an upper ground plane). Electrostatically speaking, .

the boundary conditions along conductors or dielectric inter-
faces are represented by means of infinite charge series.

We will treat two- or three-dimensional problems in exactly
the same way; microstrip [Fig. 1(b) and (c)], triplate [Fig. 1(a)],
and coplanar [Fig. 1(d) and (e)] types of transmission lines in a
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quasi-TEM approximation can be treated in the two-dimen-
sional case [1), [2]. As indicated in Fig. 1, these lines can also
be composed of several dielectrics. The three-dimensional case is
employed in the calculation of capacitances or inductances of
equivalent circuits representing discontinuities of certain lines
[Fig. 1(f)} or the capacitances obtained by the localized element
technique [Fig. 1(g)].

The aim is to find an integral representation of Green’s
functions in space with several dielectrics: log (Z) or 1/r depend-
ing upon whether the Green’s functions in free space are a
two- or three-dimensional problem. Z = y + jx is a point in
the Z plane which represents the cross section of a line charge;

2 = p? 4+ u? represents the distance between the point field
and the point source of a point charge.

In the case of a homogeneous dielectric body of permittivity
&, the integral representation of Green’s function for a line charge
[5] situated at x = 0, y = « or a point charge [6] situated at
p = 0, u = « can be written as

1 [“exp [-Ay — a]]cos Ax —
0 A

#(x,y) = exp [-4]

or
o) = f Jo(hp) exp [~ Alu = ] di. 0
4758 0

All further developments will be based upon the following
remark: A multiplication within the integral of expressions [1]



