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Letters

Computation of the Hecken Impedauce Function

J. H. CLOETE

The Dolph-Chebyshev impedance function derived by

Klopfenstein [1] has discontinuities at the taper ends which

introduce unwanted effects in certain applications. The Heeken

impedance function [2] is not optimum in the Dolph–Chebyshev

sense, but achieves matching without impedance steps. For any

bandwidth and maximum magnitude of reflection coefficient in

the passband, the Hecken taper is only slightly longer than the

opt imum taper [2]. ~ecken’s near-optimum taper is therefore an

attractive alternative to the optimum taper when impedance

disconiinuities are undesirable.

The equation for the near-optimum impedance function

contains a transcendental function G(B,&) which is tabulated in

Hecken’s paper. The function is given by

JBe—
G(B,<) = — 10{B41 – ~’} d<’

sinh B ~

where 10(Z) is the modified Bessel function of the first kind and

zero order.

Instead of using the tables, G(B,~) may be computed re-

cursively as

G(B,<) = ~B ,~oakbk

where

ao=l a~ =

be=< bk=

The derivation is based on

[3] and is not given here,

w
@ ‘k-t
C(l - Cz)’ + 2kbk_ ,

2k+l “

the method described by Grossberg
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Synthesis of Certain Transmission Lines Employed in

Microwave Integrated Circuits

RAYMOND CRAMPAGNE AND GRATIA KHOO

With a quasi-TEM approximation, the characteristic parame-

ters of numerous structures used as hyperfrequency micro-

electronics transmission lines can be calculated with the aid

of conformal mapping. Simple theoretical formulas are rarely

used since they bring into play the function K(k)/K’(k) where

K(k) is the complete elliptic integral of the first type, K’(k) its

complementary function, and k its argument.

Some geometrical configurations which can be treated are

shown in Fig. 1(a)–(c). This method is particularly interesting

since expressions of k (argument of elliptic integral) as a func-

tion of geometric dimensions are often simple.

The infinite dielectric thickness hypothesis made in certain

cases is, in general, justified by the spacing between conductors.

Although this method is surprisingly simple accompanied by a

large application domain, it has been put aside by many research

workers. Instead, sophisticated numerical methods like those of

finite differences and finite elements [1] have been preferred.

These methods are applicable for the analysis of transmission

lines but not for the synthesis, Moreover, they do not lead to
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Fig. 1.

simple formulas which can be calculated with an electronic

pocket calculator.

The aim is to obtain simple analytic formulas which may

be employed in both the analysis and synthesis of lines where

the precision of results obtained and the field of validity of

these formulas are known.

With the aid of a classical algorithm [2], values of the func-

tion j_(k) = K(k)/K’(k) for all values of k between O and 1

have been obtained with a precision of 10-8. A comparison of

our results with those given in the tables [3] (for values of the

argument k, corresponding to those of the tables) is a proof

that the precision obtained is actually 10-8.

A polynomial expression was then employed in smoothing

out the curve obtained previously by minimizing the calculated

error with the aid of the least squares method. Depending on the

use of calculated values, a development of j(k) = K/K’ as a

power of k, or a development of k = f-1 (K/K’) as a power of

K/K’, have been obtained. In order to obtain an error inferior

to 10-4 for all values of the parameter, a polynomial approx-

imation for two different independent intervals is necessary. A

single interval with the same precision would require a poly-

nomial of a degree such that its use in practice becomes in-

convenient and contrary to our aim.

Only the development off -1 will be given since ii study [4]

of the formulas given in the References indicates that the analysis

of lines can be carried out with good precision by using the

formula

K(k) = IT

K’(k) log (l/q)
(1)

where

q = E + 2&5 + 1589 + 150813 + 1707817

a.

al

‘2

“3

a4

a5

(c)

TABLE I
VALUES OF COEFFICIENTS FOR THE Two POLYNOMIAL

APPROXIMATIONS OF k = f- ‘(K/K)

o K/K’ 0,5

0,00913 a.

- 0,1352
al

+ 0,268S
az

- 0,1367
a3

+ 5,523
a4

- 5,087
a5

0,5 K/K’ 1

- 0,0656

- 0> 3211

+ 1,676

+ 0,5984

- 1,849

+ 0,6705

and ,—

Moreover, this formula can be easily manipulated on an

electronic pocket calculator.

The polynomial approximation to be found is of the form

k = f ai(K/K’)i.
jxo

(2)

The choice of the polynomial’s degree depends upon the

desired precision. In the two intervals chosen for K/K’: O <

K/K’ < 0.5 and 0.5 < K/K’ < 1, the minimum value of the

polynomial’s degree N, for an error precision of less than 10-4,
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has been found to be 5. Values of the coefficients ai (are shown

in Table I. The following transformation formulas are helpful

in restricting K/K’ to the interval (0,1)

K(k’) = K’(k) K(k) = K’(k’) k’+k’’=l. (3)

Equation (2) is valuable in practice, since it allows thesyn-

thesis of all transmission lines to be realized. A few of them are

shown in Fig. 1.

In fact, for a given characteristic impedance, the correspond-

ing geometric dimensions of the line can be calculated rapidly

by means of an electronic pocket calculator. Moreover, since

the two developments are valid for all values of the character-

istic impedance, one can know immediately if the realization of

the latter is possible or not for a chosen geometrical configura-

tion.

Hence, provided that the dielectric interfaces of geometrical

configurations do not present any difficulty in conformal map-

ping, analytical expressions obtained can be easily manipulated,

without having to resort to tables.

We hope that these synthesis formulas will find a place in the

bibliography and allow engineers to make use of elliptic inte-

grals with less hesitation.
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A Two- or Three-Dimensional Green’s Function Which

Can Be Applied to Hyperfrequency Mkroelectronic

Transmission Lines

RAYMOND CRAMPAGNE AND JEAN-LOUIS GUIRAUD

Knowing Green’s function and the charge density found on

different conductors, the diverse capacities [1]- [4] can eventually

be calculated by solving an integral equation. This has been

dealt with only for simple dielectric-conductor configurations.

In Coen’s article [5], the integral representation of log (Z) is

employed in calculating Green’s function for microstrips (with

or without an upper ground plane). Electrostatically speaking,

the boundary conditions along conductors or dielectric inter-

faces are represented by means of intinite charge series.

We will treat two- or three-dimensional problems in exactly

the same way; microstrip [Fig. l(b) and (c)], triplate [Fig. l(a)],

and coplanar [Fig. 1(d) and (e) ] types of transmission lines in a
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quasi-TEM approximation can be treated in the two-dimen-

sional case [1], [2]. As indicated in Fig. 1, these lines can also

be composed of several dielectrics. The three-dimensional case is

employed in the calculation of capacitances or inductances of

equivalent circuits representing discontinuities of certain lines

[Fig. l(~)] or the capacitances obtained by the localized element

technique [Fig. l(g)].

The aim is to find an integral representation of Green’s

functions in space with several dielectrics: log (Z) or I/r depend-

ing upon whether the Green’s functions in free space are a

two- or three-dimensional problem. Z = y + jx is a point in

the Z plane which represents the cross section of a line charge;

r 2 = P2 + U2 represents the distance between the point field

and the point source of a point charge.

In the case of a homogeneous dielectric body of permittivity

8, the integral representation of Green’s function for a line charge

[5] situated at x = O, y = a or a point charge [6] situated at

p = O, u = u can be written as

Jmexp [–A\y – al] cos Ax – exp [–A] ~1
@(x,y) = z+ o

A

or

Jd(p,u) = ~ m .lO(lp) exp [–I]u - al] dl.
4RE o

(1)

All further developments will be based upon the following

remark: A multiplication within the integral of expressions [1]


